LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D printing of extremely viscous materials using ultrasonic vibrations

Photo from archive.org

Abstract Heterogeneous materials used in biomedical, structural and electronics applications contain a high fraction of solids (>60 vol.%) and exhibit extremely high viscosities (μ > 1000 Pa s), which hinders their 3D printing using existing… Click to show full abstract

Abstract Heterogeneous materials used in biomedical, structural and electronics applications contain a high fraction of solids (>60 vol.%) and exhibit extremely high viscosities (μ > 1000 Pa s), which hinders their 3D printing using existing technologies. This study shows that inducing high-amplitude ultrasonic vibrations within a nozzle imparts sufficient inertial forces to these materials to drastically reduce effective wall friction and flow stresses, enabling their 3D printing with moderate back pressures (

Keywords: using ultrasonic; printing extremely; extremely viscous; ultrasonic vibrations; viscous materials; materials using

Journal Title: Additive manufacturing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.