Abstract Thin 316L stainless steel rods were fabricated by continuous directed energy deposition in Z direction. The process parameters (laser power, scan velocity, and powder feeding rate) were carefully selected… Click to show full abstract
Abstract Thin 316L stainless steel rods were fabricated by continuous directed energy deposition in Z direction. The process parameters (laser power, scan velocity, and powder feeding rate) were carefully selected to obtain a stable deposition process and the effects of powder feeding rate and scan velocity were studied. A preliminary study on microstructure and tensile properties of the specimens was carried out. Results indicated that the specimen showed superior austenite/ferrite (γ/δ) dual phase microstructure, high strength (608.24 MPa), and good plastic deformation capacity (65.08% shrinkage rate) when setting the laser power at 45.2 W, powder feeding rate at 2.81 g/min, and scan velocity at 0.5 mm/s. The technique reported in this paper is expected to lay the foundation for the deposition of wire or frame structures more efficiently than traditional layer-by-layer directed energy deposition.
               
Click one of the above tabs to view related content.