Abstract The behavior of high performance super duplex stainless steel (SDSS) during additive manufacturing (AM) has been investigated using a novel arc heat treatment technique. Tungsten inert gas (TIG) arc… Click to show full abstract
Abstract The behavior of high performance super duplex stainless steel (SDSS) during additive manufacturing (AM) has been investigated using a novel arc heat treatment technique. Tungsten inert gas (TIG) arc pulses were applied on a disc shaped sample mounted on a water-cooled chamber to physically simulate AM thermal cycles. SDSS base metal and a duplicated additively manufactured structure (DAMS) were used as initial microstructures. Samples were melted one, five, or 15 times by arc heat treatment. Samples were also produced with a controlled slope down of the current to create slower cooling compared to pulsing. Microstructure characterization and modelling were performed to study the evolution of microstructure and properties with successive AM cycles. Microstructural changes were dependent on the number of reheating cycles, cooling rate, and peak temperature. In particular, the DAMS austenite morphology and fraction changed after reheating to peak temperatures above 700 °C. Nitrides and sigma were observed in the high and low temperature heat affected zones, respectively. Sensitization to corrosion was more pronounced in reheated DAMS than in the base metal. Hardness was increased more by multiple remelting/reheating than by slow cooling. It was found that AM thermal cycles significantly affect SDSS properties especially for an initial microstructure similar to that produced by AM.
               
Click one of the above tabs to view related content.