LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced OFDM-NOMA for next generation wireless communication: A study of PAPR reduction and sensitivity to CFO and estimation errors

Photo by headwayio from unsplash

Abstract Orthogonal Frequency Division Multiplexing (OFDM) based on Non-Orthogonal Multiple Access (NOMA) has been previously studied to fulfil the demands of high spectral efficiency, massive connectivity and resilience to frequency… Click to show full abstract

Abstract Orthogonal Frequency Division Multiplexing (OFDM) based on Non-Orthogonal Multiple Access (NOMA) has been previously studied to fulfil the demands of high spectral efficiency, massive connectivity and resilience to frequency selectivity for the upcoming fifth generation (5G) wireless communication and beyond. NOMA enables spectrum overlapping and allows distinct users to simultaneously operate over the same frequency band, and thus enables massive connectivity. High Peak-to-Average Power Ratio (PAPR) and sensitivity to Carrier Frequency Offset (CFO) are significant demerits to deploy such a multicarrier system for 5G and beyond applications. This paper studies the problem of high PAPR and the presence of CFO with efficient pre-coding techniques and a very simplified receiver design. An improved Minimum Mean Square Error (MMSE) receiver is proposed for low-complexity Joint Equalization and CFO Compensation (JECC) in frequency domain using Banded-Matrix Implementation (BMI). Moreover, we have investigated the sensitivity of different pre-coding techniques to channel and CFO estimation errors.

Keywords: wireless communication; cfo; frequency; sensitivity; cfo estimation; generation wireless

Journal Title: AEU - International Journal of Electronics and Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.