LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Towards withholding irrigation regimes and drought-resistant genotypes as strategies to increase canola production in drought-prone environments: A modeling approach

Photo from wikipedia

Abstract The current study evaluated the development and growth of three major rapeseed genotypes (Hyola308, Hyola401, and RGS003 as early-, mid-, and late-maturity genotypes, respectively) as well as seed yield… Click to show full abstract

Abstract The current study evaluated the development and growth of three major rapeseed genotypes (Hyola308, Hyola401, and RGS003 as early-, mid-, and late-maturity genotypes, respectively) as well as seed yield under different irrigation regimes (full irrigation, withholding irrigation at the flowering stage, withholding irrigation at the pod initiation stage, and withholding irrigation at the seed filling period) and also the spatial yield potential. APSIM-Canola model was applied to investigate the response of rapeseed genotypes to irrigation regimes in ten locations. Simulated results indicated that yield potential for rapeseed production was higher in the west which is a temperate agro-climatic zone (2852.6 kg ha−1) than in the southwest which is a hot agro-climatic zone (1885.1 kg ha−1). Although Hyola401 (the mid-maturity genotype) had the maximum seed yield (2798.4 kg ha−1), RGS003 (the late-maturity genotype) was found to be more drought-resistant due to a lower decrease in seed yield (18.1 %) under water-limited conditions compared with full irrigation conditions. The current findings suggest that the mid-maturity genotype has more yield potential in the studied locations (with different climates and soils) under full irrigation conditions due to higher seed yield, and the late-maturity genotype can be suggested as a resistant genotype for future breeding programs to introduce new-high-yielding genotypes with high drought tolerance, especially in drought-prone environments. Furthermore, withholding irrigation at seed filling onwards, which showed the lowest decrease in seed yield (13.6 %), can be recommended as a strategy for water-saving at the end of the growing season, and farmers can allocate irrigation water to other crops.

Keywords: withholding irrigation; seed; irrigation; irrigation regimes; seed yield

Journal Title: Agricultural Water Management
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.