We prove a lower bound of $\Omega (d^{3/2} \cdot (2/\sqrt{3})^d)$ on the kissing number in dimension $d$. This improves the classical lower bound of Chabauty, Shannon, and Wyner by a… Click to show full abstract
We prove a lower bound of $\Omega (d^{3/2} \cdot (2/\sqrt{3})^d)$ on the kissing number in dimension $d$. This improves the classical lower bound of Chabauty, Shannon, and Wyner by a linear factor in the dimension. We obtain a similar linear factor improvement to the best known lower bound on the maximal size of a spherical code of acute angle $\theta$ in high dimensions.
               
Click one of the above tabs to view related content.