LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A structure theorem for semi-parabolic Hénon maps

Photo by mybbor from unsplash

Consider the parameter space $\mathcal{P}_{\lambda}\subset \mathbb{C}^{2}$ of complex H\'enon maps $$ H_{c,a}(x,y)=(x^{2}+c+ay,ax),\ \ a\neq 0 $$ which have a semi-parabolic fixed point with one eigenvalue $\lambda=e^{2\pi i p/q}$. We give… Click to show full abstract

Consider the parameter space $\mathcal{P}_{\lambda}\subset \mathbb{C}^{2}$ of complex H\'enon maps $$ H_{c,a}(x,y)=(x^{2}+c+ay,ax),\ \ a\neq 0 $$ which have a semi-parabolic fixed point with one eigenvalue $\lambda=e^{2\pi i p/q}$. We give a characterization of those H\'enon maps from the curve $\mathcal{P}_{\lambda}$ that are small perturbations of a quadratic polynomial $p$ with a parabolic fixed point of multiplier $\lambda$. We prove that there is an open disk of parameters in $\mathcal{P}_{\lambda}$ for which the semi-parabolic H\'enon map has connected Julia set $J$ and is structurally stable on $J$ and $J^{+}$. The Julia set $J^{+}$ has a nice local description: inside a bidisk $\mathbb{D}_{r}\times \mathbb{D}_{r}$ it is a trivial fiber bundle over $J_{p}$, the Julia set of the polynomial $p$, with fibers biholomorphic to $\mathbb{D}_{r}$. The Julia set $J$ is homeomorphic to a quotiented solenoid.

Keywords: semi parabolic; julia set; structure theorem; parabolic non; mathcal lambda; theorem semi

Journal Title: Advances in Mathematics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.