LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Going-Down principle for ample groupoids and the Baum-Connes conjecture

Photo by 8moments from unsplash

Abstract We study a Going-Down (or restriction) principle for ample groupoids and its applications. The Going-Down principle for locally compact groups was developed by Chabert, Echterhoff and Oyono-Oyono and allows… Click to show full abstract

Abstract We study a Going-Down (or restriction) principle for ample groupoids and its applications. The Going-Down principle for locally compact groups was developed by Chabert, Echterhoff and Oyono-Oyono and allows to study certain functors, that arise in the context of the topological K-theory of a locally compact group, in terms of their restrictions to compact subgroups. We extend this principle to the class of ample Hausdorff groupoids using Le Gall's groupoid equivariant version of Kasparov's bivariant KK-theory. Moreover, we provide an application to the Baum-Connes conjecture for ample groupoids which are strongly amenable at infinity. This result in turn is then used to relate the Baum-Connes conjecture for an ample groupoid group bundle which is strongly amenable at infinity to the Baum-Connes conjecture for the fibres.

Keywords: ample groupoids; connes conjecture; principle ample; baum connes; going principle

Journal Title: Advances in Mathematics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.