For a non-increasing real valued function $\psi$, a pair $(A,\mathbf{b})$ of a real $m\times n$ matrix $A$ and $\mathbf{b}\in\mathbb{R}^m$ is said to be $\psi$-Dirichlet improvable if the system $$\|A\mathbf{q}+\mathbf{b}-\mathbf{p}\|^m <… Click to show full abstract
For a non-increasing real valued function $\psi$, a pair $(A,\mathbf{b})$ of a real $m\times n$ matrix $A$ and $\mathbf{b}\in\mathbb{R}^m$ is said to be $\psi$-Dirichlet improvable if the system $$\|A\mathbf{q}+\mathbf{b}-\mathbf{p}\|^m < \psi(T)\quad\text{and}\quad\|\mathbf{q}\|^n < T$$ has a solution $\mathbf{p}\in\mathbb{Z}^m$, $\mathbf{q}\in\mathbb{Z}^n$ for all sufficiently large $T$. Kleinbock and Wadleigh established an integrability criterion for the Lebesgue measure of the $\psi$-Dirichlet non-improvable set. In this paper, we prove a similar criterion for the Hausdorff measure of the $\psi$-Dirichlet non-improvable set. Also, we extend this result to the singly metric case that $\mathbf{b}$ is fixed. As an application, we compute the Hausdorff dimension of the set of pairs $(A,\mathbf{b})$ with uniform Diophantine exponents $\widehat{w}(A,\mathbf{b})\leq w$.
               
Click one of the above tabs to view related content.