LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic Resonance Imaging of the Globe-Tendon Interface for Extraocular Muscles: Is There an "Arc of Contact"?

Photo from wikipedia

PURPOSE To determine if the "arc of contact" is an accurate approximation of the globe-tendon interface for the biomechanical modeling of extraocular muscle (EOM) force transfer onto the globe. METHODS… Click to show full abstract

PURPOSE To determine if the "arc of contact" is an accurate approximation of the globe-tendon interface for the biomechanical modeling of extraocular muscle (EOM) force transfer onto the globe. METHODS At a single academic institution, 18 normal and 14 strabismic subjects were prospectively recruited for surface-coil enhanced magnetic resonance imaging at 312- or 390-μm resolution in axial planes for horizontal EOMs (23 subjects, 26 orbits) and sagittal planes for vertical EOMs (13 subjects, 22 orbits) during large ipsiversive ductions. The measured angle at insertion and the predicted angle assuming an "arc of contact" were compared using paired t tests. RESULTS For normal EOMs, the measured angle at insertion was significantly greater than predicted assuming an "arc of contact" for the medial rectus (MR) (5.0 ± 4.8 degrees vs 0.0 ± 0.0 degrees, P = .03), lateral rectus (LR) (4.9 ± 3.0 degrees vs 0.0 ± 0.0 degrees, P = .02), inferior rectus (7.4 ± 4.8 degrees vs 1.2 ± 2.6 degrees, P = .00003), and superior rectus (0.6 ± 1.1 degrees vs 0.0 ± 0.0 degrees, P = .04). In strabismic subjects, the measured angle was significantly greater for the MR in abducens palsy (9.9 ± 4.3 degrees vs 0.5 ± 0.7 degrees, P = .0007) and after MR resection (9.0 ± 6.9 degrees vs 1.2 ± 2.4 degrees, P = .02), but not after LR recession (2.9 vs 0.0 degrees). Single subjects had comparable angles after MR recession, but markedly different angles after MR and LR posterior fixation. CONCLUSIONS Contrary to the "arc of contact" biomechanical model, normal and postsurgical EOMs are significantly non-tangent to the globe at their scleral insertions. The "arc of contact" should be replaced in biomechanical modeling by the experimentally measured angles at tendon insertions. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.

Keywords: degrees degrees; arc contact; globe tendon; tendon interface

Journal Title: American journal of ophthalmology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.