LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fos activation patterns related to acute ethanol and conditioned taste aversion in adolescent and adult rats.

Photo by philinit from unsplash

Studies in rats have revealed marked age differences in sensitivity to the aversive properties of ethanol, with a developmental insensitivity to ethanol aversion that is most pronounced during pre- and… Click to show full abstract

Studies in rats have revealed marked age differences in sensitivity to the aversive properties of ethanol, with a developmental insensitivity to ethanol aversion that is most pronounced during pre- and early adolescence, declining thereafter to reach the enhanced aversive sensitivity of adults. The adolescent brain undergoes significant transitions throughout adolescence, including in regions linked with drug reward and aversion; however, it is unknown how ontogenetic changes within this reward/aversion circuitry contribute to developmental differences in aversive sensitivity. The current study examined early adolescent (postnatal day [P]28-30) and adult (P72-74) Sprague-Dawley male rats for conditioned taste aversion (CTA) after doses of 0, 1.0, or 2.5 g/kg ethanol, and patterns of neuronal activation in response to ethanol using Fos-like immunohistochemistry (Fos+) to uncover regions where age differences in activation are associated with ethanol aversion. An adolescent-specific ethanol-induced increase in Fos+ staining was seen within the nucleus accumbens shell and core. An age difference was also noted within the Edinger-Westphal nucleus (EW) following administration of the lower dose of ethanol, with 1 g/kg ethanol producing CTA in adults but not in adolescents and inducing a greater EW Fos response in adults than adolescents. Regression analysis revealed that greater numbers of Fos+ neurons within the EW and insula (Ins) were related to lower consumption of the conditioned stimulus (CS) on test day (reflecting greater CTA). Some regionally specific age differences in Fos+ were noted under baseline conditions, with adolescents displaying fewer Fos+ neurons than adults within the prelimbic (PrL) cortex, but more than adults in the bed nucleus of the stria terminalis (BNST). In the BNST (but not PrL), ethanol-induced increases in Fos-immunoreactivity (IR) were evident at both ages. Increased ethanol-induced activity within critical appetitive brain regions (NAc core and shell) supports a role for greater reward-related activation during adolescence, possibly along with attenuated responsiveness to ethanol in EW and Ins in the age-typical resistance of adolescents to the aversive properties of ethanol.

Keywords: age; aversion; taste aversion; ethanol; conditioned taste; activation

Journal Title: Alcohol
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.