Bacterial vaginosis (BV) is a common polymicrobial infection affecting women in the reproductive age and is associated with adverse obstetric and gynaecological outcomes. Gardnerella vaginalis is the most virulent anaerobic… Click to show full abstract
Bacterial vaginosis (BV) is a common polymicrobial infection affecting women in the reproductive age and is associated with adverse obstetric and gynaecological outcomes. Gardnerella vaginalis is the most virulent anaerobic bacterial species predominantly associated with BV. However, a clear understanding of the mechanisms by which it contributes to the pathogenesis and persistence of BV is lacking. In this report, we demonstrate for the first time, the isolation of membrane vesicles (MVs) from G. vaginalis ATCC 14019. These MVs are approximately 120-260 nm in diameter. Proteomic characterization of the MVs by LC-MS/MS led to the identification of 417 proteins, including proteins involved in cellular metabolism as well as molecular chaperones and certain virulence factors. Immunoblot analysis of the MVs confirmed the presence of vaginolysin, the most well-characterized virulence factor of G. vaginalis. The exposure of the vaginal epithelial cells, VK2/E6E7 to the G. vaginalis MVs resulted in the internalization of the MVs. The MVs induced cytotoxicity and an increase in the levels of the pro-inflammatory cytokine, IL-8 in VK2 cells as well lysis of erythrocytes. The results of the study indicate that G. vaginalis MVs may be involved in the delivery of cytotoxic proteins and other virulence factors to the host cells and could thereby contribute towards enhancing the cellular damage associated with pathogenesis of BV.
               
Click one of the above tabs to view related content.