LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An alternative model for fetal loss disorders associated with mare reproductive loss syndrome

Photo from wikipedia

Fertile chicken eggs were used as an alternative model for large animals to evaluate suspect toxic dietary ingredients for fetal loss disorders associated with mare reproductive loss syndrome (MRLS) and… Click to show full abstract

Fertile chicken eggs were used as an alternative model for large animals to evaluate suspect toxic dietary ingredients for fetal loss disorders associated with mare reproductive loss syndrome (MRLS) and fetal losses in other livestock. Nitrate, ammonia, and sulfate may react with proteinaceous compounds to enable the formation of abiotic pathogenic nanoparticles which were constant findings in pathognomonic placental lesions associated with non-infectious fetal losses of previously unknown etiology in mares, chickens and other livestock. The pathogenic nanoparticles may be produced naturally by toxic elements associated with air pollution that affect pasture forages or crops, unintentionally by reactions of these elements in protein-mineral mixes in dietary rations, or endogenously within tissues of fetuses and adult animals. The nanoparticles may form niduses in small vessels and predispose animals to a host of secondary opportunistic diseases affecting the reproductive, respiratory and gastrointestinal tracts of animals. The newly recognized abiotic pathogenic micro and nanoparticles are associated with MRLS. The discovery of the pathogenic nanoparticles led to the identification of nitrate, ammonium, and sulfur, in the form of sulfate, that seemingly enable the formation of the pathogenic nanoparticles in embryonic and fetal tissues.

Keywords: fetal loss; loss disorders; disorders associated; alternative model; associated mare; loss

Journal Title: Animal Nutrition
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.