LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of inhibitors of dengue viral replication using replicon cells expressing secretory luciferase.

Photo by tengyart from unsplash

Dengue virus (DENV) is the causative agent of dengue fever (DF), dengue haemorrhagic fever (DHF), and dengue shock syndrome (DSS) and continues to be a public health problem in the… Click to show full abstract

Dengue virus (DENV) is the causative agent of dengue fever (DF), dengue haemorrhagic fever (DHF), and dengue shock syndrome (DSS) and continues to be a public health problem in the tropical and subtropical areas. However, there is currently no antiviral treatment for DENV infection. In this study, our aim was to develop a stable reporter replicon cell system that supports constant viral RNA replication in cultured cells. The isolated replicon cells exhibited high levels of luciferase activity in the culture supernatant concomitant with expression of virus-encoded NS1, NS3 and NS5 proteins in the cells. The NS1, NS3 proteins and dsRNA were detected in the replicon cells by immunofluorescence analysis. Furthermore, the anti-DENV inhibitors ribavirin and bromocriptine significantly reduced the luciferase activity in a dose-dependent manner. High-throughput screening with a compound library using the stably-transfected replicon cells showed a Z' factor value of 0.57. Our screening yielded several candidates including one compound that has already shown anti-DENV activity. Taken together, our results demonstrate that this DENV subgenomic replicon cell system expressing a secretory luciferase gene can be useful for the high-throughput screening of anti-DENV compounds and the analysis of the replication mechanism of the DENV RNA.

Keywords: secretory luciferase; denv; expressing secretory; replicon cells; replication

Journal Title: Antiviral research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.