Abstract This paper focuses on the freeze-plug, a key safety component of the Molten Salt Fast Reactor, one of the Gen. IV nuclear reactors that must excel in safety, reliability,… Click to show full abstract
Abstract This paper focuses on the freeze-plug, a key safety component of the Molten Salt Fast Reactor, one of the Gen. IV nuclear reactors that must excel in safety, reliability, and sustainability. The freeze-plug is a valve made of frozen fuel salt, designed to melt when an event requiring the core drainage occurs. Melting and draining must be passive, relying on decay heat and gravity, and must occur before the reactor incurs structural damage. In this work, we preliminarily investigate the freeze-plug melting behavior, assessing the influence of various design configurations and parameters (e.g., sub-cooling, recess depth). We used COMSOL Multiphysics® to simulate melting, adopting an apparent heat capacity method. Results show that single-plug designs generally outperform multi-plug ones, where melting is inhibited by the formation of a frozen layer on top of the metal grate hosting the plugs. The layer thickness strongly depends on sub-cooling and recess depth. For multi-plug designs, the P / D ratio has a negligible influence on melting and can therefore be chosen to optimize the draining time. The absence of significant mixing in the pipe region above the plug leads to acceptable melting times (i.e., http://samofar.eu/ ), consists in accelerating melting via heat stored in steel masses adjacent to the draining pipe.
               
Click one of the above tabs to view related content.