LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The role of electron orbital angular momentum in the Aharonov–Bohm effect revisited

Photo by _louisreed from unsplash

This is a brief review on the theoretical interpretation of the Aharonov-Bohm effect, which also contains our new insight into the problem. A particular emphasis is put on the unique… Click to show full abstract

This is a brief review on the theoretical interpretation of the Aharonov-Bohm effect, which also contains our new insight into the problem. A particular emphasis is put on the unique role of electron orbital angular momentum, especially viewed from the novel concept of the physical component of the gauge field, which has been extensively discussed in the context of the nucleon spin decomposition problem as well as the photon angular momentum decomposition problem. Practically, we concentrate on the frequently discussed idealized setting of the Aharonov-Bohm effect, i.e. the interference phenomenon of the electron beam passing around the infinitely-long solenoid. One of the most puzzling observations in this Aharonov-Bohm solenoid effect is that the pure-gauge potential outside the solenoid appears to carry non-zero orbital angular momentum. Through the process of tracing its dynamical origin, we try to answer several fundamental questions of the Aharonov-Bohm effect, which includes the question about the reality of the electromagnetic potential, the gauge-invariance issue, and the non-locality interpretation, etc.

Keywords: aharonov bohm; bohm effect; angular momentum; effect; orbital angular

Journal Title: Annals of Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.