LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coherence of quantum channels

We investigate the coherence of quantum channels using the Choi-Jamiolkowski isomorphism. The relation between the coherence and the purity of the channel respects a duality relation. It characterizes the allowed… Click to show full abstract

We investigate the coherence of quantum channels using the Choi-Jamiolkowski isomorphism. The relation between the coherence and the purity of the channel respects a duality relation. It characterizes the allowed values of coherence when the channel has certain purity. This duality has been depicted via the Coherence-Purity (Co-Pu) diagrams. In particular, we study the quantum coherence of the unital and non-unital qubit channels and find out the allowed region of coherence for a fixed purity. We also study coherence of different incoherent channels, namely, incoherent operation (IO), strictly incoherent operation (SIO), physical incoherent operation (PIO) etc. Interestingly, we find that the allowed region for different incoherent operations maintain the relation $PIO\subset SIO \subset IO$. In fact, we find that if PIOs are coherence preserving operations (CPO), its coherence is zero otherwise it has unit coherence and unit purity. Interestingly, different kinds of qubit channels can be distinguished using the Co-Pu diagram. The unital channels generally do not create coherence whereas some nonunital can. All coherence breaking channels are shown to have zero coherence, whereas, this is not usually true for entanglement breaking channels. It turns out that the coherence preserving qubit channels have unit coherence. Although the coherence of the Choi matrix of the incoherent channels might have finite values, its subsystem contains no coherence. This indicates that the incoherent channels can either be unital or nonunital under some conditions.

Keywords: coherence quantum; coherence; quantum channels; purity; qubit channels

Journal Title: Annals of Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.