LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distance rendering and perception of nearby virtual sound sources with a near-field filter model

Photo from wikipedia

Abstract Headphone rendering of nearby virtual sound sources represents to date an open issue in 3-D audio, due to a number of technical challenges and temporal requirements involved in the… Click to show full abstract

Abstract Headphone rendering of nearby virtual sound sources represents to date an open issue in 3-D audio, due to a number of technical challenges and temporal requirements involved in the measurement of individual Head-Related Transfer Functions (HRTFs). In order to tackle this problem, we propose a filter model of near-field effects based on the Distance Variation Function (Kan et al., 2009). Thanks to its simple structure and low order, the model can be applied to any far-field virtual auditory display to yield a realistic and computationally efficient near-field compensation of spectral and binaural effects. The model is subjectively evaluated in two psychophysical experiments where the relative distance of pairs of virtually rendered sound sources is judged. Results show that even though sound intensity overshadows subtler near-field effects when it is available as a cue for distance, the model is capable of offering relative distance information of near lateral virtual sources when intensity cues are removed. Furthermore, performances of the model in relative distance rendering are compared to those of alternative near-field rendering methods available in the literature.

Keywords: sound sources; field; distance; near field; model; nearby virtual

Journal Title: Applied Acoustics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.