LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An efficient algorithm for nonlinear active noise control of impulsive noise

Photo by clemono from unsplash

Abstract Nonlinear active noise control (NANC) systems employing Volterra filter suffer from the stability issues in the presence of impulsive noise. To solve this problem, we combine the second-order Volterra… Click to show full abstract

Abstract Nonlinear active noise control (NANC) systems employing Volterra filter suffer from the stability issues in the presence of impulsive noise. To solve this problem, we combine the second-order Volterra (SOV) filter and maximum correntropy criterion (MCC) in this paper. The Volterra filter-x maximum correntropy criterion (VF × MCC) algorithm and Volterra filter-x recursive maximum correntropy (VF × RMC) algorithm are applied to reduce the impulsive noise of NANC. We find that VF × MCC algorithm has a low computational complexity and VF × RMC algorithm converges fast. In order to extract their advantages, we further propose a hybrid algorithm based on the VF × MCC and VF × RMC algorithms. In addition, the normalize step-size version of VF × MCC (VF × nMCC) algorithm is developed to improve the robustness and performance. Meanwhile, we adaptively adjust the kernel size of MCC online based on the sample variance of reference signal to improve the performance of the proposed algorithms. Simulation results in the context of nonlinear active impulsive noise control demonstrate that the proposed algorithms achieve much better performance than the existing algorithms in various noise environments.

Keywords: noise control; nonlinear active; active noise; noise; impulsive noise

Journal Title: Applied Acoustics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.