LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced liquid phase catalytic hydrogenation reduction of bromate over Pd-on-Au bimetallic catalysts

Photo from wikipedia

Abstract Pd-Au/TiO2 bimetallic catalysts with varied Au contents were prepared by the sequential photocatalytic deposition method and the liquid phase catalytic hydrogenation reduction of bromate over these catalysts was investigated.… Click to show full abstract

Abstract Pd-Au/TiO2 bimetallic catalysts with varied Au contents were prepared by the sequential photocatalytic deposition method and the liquid phase catalytic hydrogenation reduction of bromate over these catalysts was investigated. The catalysts were characterized using X-ray diffraction, transmission electron microscope, UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, H2 chemisorption and energy dispersive spectroscopy. Characterization results showed that Pd atoms were site-deposited on the surface of varied size Au cores and formed Pd-on-Au core-shell like bimetallic nanoparticles on TiO2. The bimetallic catalysts showed higher Pd dispersions and more exposed active sites than that of Pd/TiO2, and the amount of exposed active sites first increased then decreased with Au content. For a similar Pd loading, the bimetallic catalyst exhibited volcano-shape activity as a function of Au loading and the highest activity was identified on Pd-Au(1.0)/TiO2 with Au core size around 8.4 nm. In addition, the catalytic reduction of bromate could be well-fitted by the Langmuir-Hinshelwood model, reflecting an adsorption controlled mechanism.

Keywords: reduction bromate; liquid phase; spectroscopy; bimetallic catalysts

Journal Title: Applied Catalysis A: General
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.