LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New photocatalysts based on Cd0.3Zn0.7S and Ni(OH)2 for hydrogen production from ethanol aqueous solutions under visible light

Photo by austriannationallibrary from unsplash

Abstract The Cd0.3Zn0.7S photocatalysts modified by nickel hydroxide were prepared and characterized by different experimental techniques including X-ray diffraction, UV–vis spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The obtained… Click to show full abstract

Abstract The Cd0.3Zn0.7S photocatalysts modified by nickel hydroxide were prepared and characterized by different experimental techniques including X-ray diffraction, UV–vis spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The obtained photocatalysts were tested in the photocatalytic hydrogen evolution from ethanol aqueous solutions under visible light irradiation (λ = 450 nm). The nickel-modified photocatalysts were found to be more active than the zinc-modified ones. The reasons of high activity of Ni-contained photocatalysts and their transformations during the photocatalytic hydrogen production were discussed. The dependences of hydrogen production rate on ethanol and NaOH concentrations were obtained, the highest value of the photocatalytic activity was 27 mmol h−1 g−1 for 1%Pt/10% Ni(OH)2/Cd0.3Zn0.7S (50% vol. ethanol, 1 M NaOH), apparent quantum efficiency exceeded 90%. A kinetic model describing the experimental data was proposed.

Keywords: cd0 3zn0; ethanol aqueous; hydrogen production; spectroscopy

Journal Title: Applied Catalysis A: General
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.