LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the deactivation of Ni-Al catalysts in CO2 methanation

Photo by elevatebeer from unsplash

Abstract This work provides detailed knowledge of long-term deactivation of Ni catalysts in CO2 methanation. NiAlOx mixed oxides with varying Ni loading as well as a 17 wt-% Ni/γ-Al2O3 catalyst were… Click to show full abstract

Abstract This work provides detailed knowledge of long-term deactivation of Ni catalysts in CO2 methanation. NiAlOx mixed oxides with varying Ni loading as well as a 17 wt-% Ni/γ-Al2O3 catalyst were synthesized via co-precipitation and incipient wetness impregnation, respectively. The catalysts were aged at 523, 573 and 623 K under equilibrium conditions up to 165 h. Periodic activity measurements under differential conditions reveal severe deactivation. The stability of co-precipitated systems increases with decreasing Ni content on the expense of catalyst activity. Ni/γ-Al2O3 exhibits a lower stability as a comparable mixed oxide. A power law model is applied for the kinetic description of deactivation. Catalyst samples are characterized by means of temperature programmed desorption of H2 (H2-TPD) and CO2 (CO2-TPD), pulsed H2 chemisorption, XRD, FT-IR spectroscopy, XPS and N2 physisorption. Main deactivation mechanisms in the co-precipitated samples are found to be Ni particle sintering, a loss of BET surface area as well as a reduction of CO2 adsorption capacity and medium basic sites, along with structural changes of the mixed oxide phase. Ni particle growth and a decrease in BET surface area lead to deactivation of the impregnated sample. Structure-activity correlations imply a complex interplay of governing deactivation phenomena as well as structure sensitivity.

Keywords: catalysts co2; deactivation catalysts; catalyst; deactivation; co2 methanation

Journal Title: Applied Catalysis A: General
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.