LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlling the acid-base properties of alumina for stable PtSn-based propane dehydrogenation catalysts

Photo from wikipedia

Abstract The surface properties of catalyst supports are important in regulating the catalytic properties of heterogeneous catalysts. Herein, we studied the effect of acid-base properties of alumina on metal-support interaction… Click to show full abstract

Abstract The surface properties of catalyst supports are important in regulating the catalytic properties of heterogeneous catalysts. Herein, we studied the effect of acid-base properties of alumina on metal-support interaction and coke deposition, and investigated the stability of catalysts in propane dehydrogenation (PDH) using PtSn/Al2O3. We prepared γ-Al2O3 (A750) from ammonium aluminum carbonate hydroxide (AACH) and compared it with a commercial sample (Sasol Puralox SBA-200; P200). We loaded 0.5 wt% Pt and 0.9 wt% Sn on alumina then conducted propane dehydrogenation at 590 °C (WHSV = 5.2 h−1). PtSn/A750 and PtSn/P200 showed compatible initial activity (conversion = ˜50%) and selectivity (> 95%). After 20 h of reaction, PtSn/A750 showed a slight decrease in activity (39.9%) while the activity of PtSn/P200 dropped significantly (28.4%). Spent catalysts showed different metal sintering behavior and coke deposition which are well known causes for catalyst deactivation. A high strength of Lewis acid sites in A750 (higher Td in ethanol TPD) prevented the sintering of metal by strong metal-support interaction. Also, the lower number of Lewis acid sites in A750 than that of P200 reduced deposited coke on the catalysts (PtSn/A750: 1.8 wt% and PtSn/P200: 8.6 wt%). Furthermore, diffuse reflectance infrared Fourier-transform spectroscopy after CO adsorption at -150 °C clearly demonstrated that coke deposition was initiated from Lewis acid sites on the alumina surface, but then aromatization occurs at these sites. These results suggested that strong metal-support interactions to hold metal particles and less residual Lewis acid sites after metal loading to reduce coke deposition are important factors for designing stable and coke-resistant PtSn on alumina catalysts. Furthermore, precise characterization and understanding of the acid-base properties of alumina will contribute in developing catalysts with high stability.

Keywords: base properties; acid base; properties alumina; ptsn; propane dehydrogenation

Journal Title: Applied Catalysis A: General
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.