LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ru subnanoparticles on N-doped carbon layer coated SBA-15 as efficient Catalysts for arene hydrogenation

Photo from wikipedia

Abstract The N-doped carbon layer coated SBA-15 support has been accomplished via a pyrolysis process. The ultra-low loading Ru nanoparticles (ca. 0.1 wt.%) was incorporated into the support by impregnation and… Click to show full abstract

Abstract The N-doped carbon layer coated SBA-15 support has been accomplished via a pyrolysis process. The ultra-low loading Ru nanoparticles (ca. 0.1 wt.%) was incorporated into the support by impregnation and the sequential reduction. The images of HAADF-STEM revealed that the Ru particles with sub-1-nm size (0.2-0.7 nm) were uniformly dispersed on the support. The ultrafine Ru particles displayed the excellent activity for the hydrogenation of olefins, arenes, phenol derivatives and heteroarenes in aqueous phase. The aliphatic or alicyclic compounds were produced selectively without the hydrogenolysis of C O and C N bonds. The high turnover frequency (TOF) values can reach up to 10,000 h−1. Notably, the activity of these catalysts improved dramatically with decreasing the sizes of Ru particles. Meanwhile, the N-doped carbon layer coating endowed the high stability of the Ru catalysts and prevented the leaching of the Ru species owning to the strong interaction between doped-N atoms and the ultrafine Ru particles. Overall, this work provides a highly attractive strategy to construct the supported sub-1-nm Ru particles utilized for the aqueous hydrogenation.

Keywords: layer coated; carbon layer; doped carbon; hydrogenation

Journal Title: Applied Catalysis A: General
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.