LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction

Photo by refargotohp from unsplash

Abstract Recently, molybdenum sulfide with its amorphous counterpart was found to hold a high activity versus the hydrogen evolution reaction (HER), making it a high potential material to explore new… Click to show full abstract

Abstract Recently, molybdenum sulfide with its amorphous counterpart was found to hold a high activity versus the hydrogen evolution reaction (HER), making it a high potential material to explore new HER catalysts. Here we present a facile chemical method to synthesize ultra-small freestanding amorphous molybdenum sulfide (a-MoSx) colloidal nanodots with diameter of lower than 2 nm. Electrocatalytic HER tests show that freestanding a-MoSx colloidal nanodots exhibit an enhanced catalytic hydrogen activity in stark in contrast with in-situ annealed c-MoS2. When applied as a co-catalyst in photocatalytic HER, ultra-small a-MoSx nanodots could form a compact interface with the TiO2 when assisted by a bifunctional molecular linker, as the mercaptopropionic acid (MPA), which facilitates the decrease of the interfacial Schottky barrier occurring between the two components and allows for a fast injection of photo-excited electrons from the photoharvester into the co-catalyst. Our results demonstrate that the drastic enhancement of the photocatalytic H2 promotion rate of a-MoSx@MPA-TiO2 is mainly provided by unsaturated Mo(IV) active sites generated by the in-situ reduction during the photocatalytic HER process. The synergistic effect of generated unsaturated Mo(IV) sites and the presence of more exposed intrinsic active edges further promotes the enhancement of the catalytic H2 activity on a-MoSx nanodots.

Keywords: colloidal nanodots; molybdenum sulfide; hydrogen evolution; evolution reaction; ultra small

Journal Title: Applied Catalysis B: Environmental
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.