Abstract Regulating the coordination environment of Co single-atom catalysts represents a powerful strategy to enhance its catalytic performance for CO2 electrochemical reduction. Herein, we adopt metal-organic frameworks (MOFs) to assist… Click to show full abstract
Abstract Regulating the coordination environment of Co single-atom catalysts represents a powerful strategy to enhance its catalytic performance for CO2 electrochemical reduction. Herein, we adopt metal-organic frameworks (MOFs) to assist the preparation of Co single-atom catalysts with four-coordinated N and four-coordinated N/C on N-doped porous carbon. The atomic dispersion of Co atoms species on the N-doped porous carbon were confirmed using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) analysis. XAFS results revealed that the coordination number of the N binding to the Co single atom was strongly dependent on the pyrolysis temperature. The Co atoms with four-coordinated N on N-doped porous carbon (Co1-N4) exhibited a Faradaic efficiency of 82% and a current density of -15.8 mA cm−2 for CO production in CO2 electrochemical reduction. Moreover, the Co1-N4 catalytic site also held remarkable stability for 10-hour potentiostatic test towards CO2 electrochemical reduction. Mechanistic study further revealed that the Co1-N4 active site promotes the binding strength of CO2 and facilitates CO2 activation, which was responsible for its excellent CO2 electrochemical reduction performance.
               
Click one of the above tabs to view related content.