LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergetic promotional effect of oxygen vacancy-rich ultrathin TiO2 and photochemical induced highly dispersed Pt for photoreduction of CO2 with H2O

Photo from wikipedia

Abstract The ultrathin TiO2 nanosheets (TiO2-U) with abundant defects were successfully fabricated as substrates to support well-dispersed Pt nanoparticles with low metal loading by photochemical route (P), with impregnated Pt/TiO2-U,… Click to show full abstract

Abstract The ultrathin TiO2 nanosheets (TiO2-U) with abundant defects were successfully fabricated as substrates to support well-dispersed Pt nanoparticles with low metal loading by photochemical route (P), with impregnated Pt/TiO2-U, Pt/TiO2-bulk and photoreduced Pt/TiO2-bulk as control samples, to focus on studying the inductive effect of oxygen vacancy-rich ultrathin TiO2 on highly dispersed Pt nanoparticles, and their synergetic promotional effect for CO2 photoreduction. As expected, P-Pt/TiO2-U exhibited excellent photocatalytic efficiency for the selective conversion of CO2 into CH4 and CO. The ultrathin TiO2 nanosheets with a large number of low coordinative sites and ultralarge surface area promoted the rate of electron-transfer. The ultrafine Pt nanoparticles induced by photochemical strategy facilitated the efficient separation of electron–hole pairs. Furthermore, the synergy of metal and support improved the adsorption ability of CO2. These three factors were considered to drive jointly the enhancement of catalytic performance in this system. This work offers deep insights for the design of highly efficient catalysts with coordinatively unsaturated sites for CO2 photoconversion in the presence of H2O.

Keywords: co2; tio2; ultrathin tio2; oxygen vacancy; effect oxygen

Journal Title: Applied Catalysis B: Environmental
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.