Abstract Highly-efficient and eco-friendly materials and technologies are urgently needed to meet the requirements of nowadays green development. Photocatalysis with using solar energy and enzymatic catalysis with eco-friendly nature are… Click to show full abstract
Abstract Highly-efficient and eco-friendly materials and technologies are urgently needed to meet the requirements of nowadays green development. Photocatalysis with using solar energy and enzymatic catalysis with eco-friendly nature are effective alternatives to address the problem. Notably, beneficial use of the synergistic effect of artificial enzyme and advanced photocatalyst has attracted wide attention. This work presents a biomimetic photocatalytic material, two-dimensional (2D) biomimetic hemin-bismuth tungstate (HBWO). Stable HBWO composites formed by immobilization of monomeric hemin on 2D bismuth tungstate layer, exhibit high photocatalytic performance, better than that of pure 2D bismuth tungstate and unsupported hemin. HBWO shows layered structure with the interlayer spacing at ˜0.35 nm. In the photocatalytic process, hemin can not only act as an electron shuttle, also play an important role in oxygen transfer. Additionally, the synthesized HBWO composites exhibit nice binding affinities and high photocatalytic activity in tetracycline degradation. It is anticipated that beneficial use of synergistic effect of artificial enzyme and photocatalyst via HBWO composites can be a promising eco-friendly and efficient solution for addressing the environmental crisis.
               
Click one of the above tabs to view related content.