Abstract Efficient anode materials are essential to electrochemical advanced oxidation processes (EAOPs) for organic wastewater treatment. In this regard, blue TiO2 nanotube arrays (Blue-TNA) anode was prepared for the first… Click to show full abstract
Abstract Efficient anode materials are essential to electrochemical advanced oxidation processes (EAOPs) for organic wastewater treatment. In this regard, blue TiO2 nanotube arrays (Blue-TNA) anode was prepared for the first time in formic acid electrolyte by electrochemical self-doping and applied for electrochemical degradation of contaminants. Characterized by XPS, Raman and Mott-Schottky curves, the formation of Ti3+ on Blue-TNA was confirmed. This anode was more efficient and had a higher hydroxyl radical production activity (1.7 × 10−14 M) than BDD (9.8 × 10-15 M), inducing a higher TOC and COD removal of 100 mg/L phenol with a lower energy consumption of 9.9 kW h/(kg COD) at current density 2.5 mA/cm2, pH 5 in 0.1 M Na2SO4, account for the lower accumulation of degradation intermediates. Both •OH and SO4•- were responsible for the degradation on Blue-TNA anode, while their contributions differed greatly with that of BDD, and could be affected and regulated by the operating parameters like current density, initial pH and Na2SO4 concentration. Blue-TNA anode represented a relative stable performance for 5 cycles degradation of 100 mg/L phenol for each cycle of 300 min, and such an oxidation capacity could be easily regenerated by electrochemical reduction in formic acid. Blue-TNA anode had an excellent performance on the TOC removal and MCE especially at low current density of 2.5 mA/cm2 when compared with other anodes. Therefore, Blue-TNA anode is hopeful a promising and cost-effective anode for electrochemical oxidation.
               
Click one of the above tabs to view related content.