Temperature is one of the factors which affect the power availability, driveability and durability of the battery pack. Folded fin and serpentine channel are commonly used to provide cooling for… Click to show full abstract
Temperature is one of the factors which affect the power availability, driveability and durability of the battery pack. Folded fin and serpentine channel are commonly used to provide cooling for the battery pack. During the cooling process, fluid absorbed the heat generated along the flow direction and caused the reduction of the cooling capacity. Hence, downstream temperature is always higher than the upstream temperature. Inconsistent cooling effect will lead to high variation of temperature distribution and shorten the life expectancy of the battery pack. In this study, a battery module consists of three pieces of LiFePO4 pouch cell arranged side by side, and aluminium foam is sandwiched between two heat spreaders to form a cooling plate. Aluminium foams with different porosity and pores density were modelled to investigate the thermal performance and flow field numerically. Correlation of Nusselt number, permeability and resistance loss coefficient from the literature was extracted and used in the CFD simulation. From the simulation results, it is shown that 10 PPI aluminium foam with 0.918 porosity offered the highest thermal performance and lowest flow resistance. Hence, the optimized aluminium foam cooling plate can be used as a new type of cooling system for the battery pack.
               
Click one of the above tabs to view related content.