LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A multi-lateral trading model for coupled gas-heat-power energy networks

Photo from wikipedia

The proliferation of cogeneration technology and the need for more resilient energy utilization inspire the emerging trend of integration of multi-resource energy systems, in which natural gas, heat, and electricity… Click to show full abstract

The proliferation of cogeneration technology and the need for more resilient energy utilization inspire the emerging trend of integration of multi-resource energy systems, in which natural gas, heat, and electricity are produced, delivered, converted, and distributed more efficiently and flexibly. The increasing interactions and interdependencies across heterogenous physical networks impose remarkable challenges on the operation and market organization. This paper envisions the market trading scheme in the network-coupled natural gas system, district heating system, and power system. Based on the physical energy flow models of each system and their interdependency, a multi-lateral trading gas-heat-power (MLT-GHP) model is suggested, and a mixed-integer linear programming based two-phase algorithm is developed to find the market equilibrium. Case studies on two testing systems demonstrate the effectiveness of the proposed model and method, showing that the multi-lateral trading essentially results in market competition that orientates reasonable energy prices. Some prospects for future researches are also summarized.

Keywords: energy; lateral trading; gas heat; gas; multi lateral

Journal Title: Applied Energy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.