LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling

Photo from wikipedia

Microgrid is universally accepted as a new approach to solve the global energy problem. In a microgrid, the optimal sizing of energy storage is necessary to ensure reliability and improve… Click to show full abstract

Microgrid is universally accepted as a new approach to solve the global energy problem. In a microgrid, the optimal sizing of energy storage is necessary to ensure reliability and improve economic efficiency. Its sizing results are impacted by uncertainty on natural resources, energy storage as well as load, and it is hard to coordinate these factors. Therefore, microgrid needs more improved strategies for optimal sizing. In this paper, we present a power source sizing strategy with integrated consideration of characteristics of distributed generations, energy storage and loads. Distributed generations consist of wind turbine, photovoltaic panels, combined heat and power generation (CHP) as well as electric vehicles. A two-layer hybrid energy storage system with three storage types (i.e. super capacitor, li-ion battery, lead-acid battery) is constructed based on their power density, energy density, response speed and lifetime, as well as load classification. Power load differences among different time intervals which are supplied by different types of storage leads to allocation of energy storage. An objective function is established based on life cycle cost (LCC) theory, which includes construction cost, operation maintenance cost, recycling profit, environment cost, and energy shortage compensation. Three scenarios, in which particle swarm optimization (PSO) is used for the optimal sizing, modeling and results calculating. From the simulations results analysis, it is found that the proposed model and strategy are feasible and practical.

Keywords: storage; chp; energy; energy storage; power; cost

Journal Title: Applied Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.