LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Short-term residential load forecasting: Impact of calendar effects and forecast granularity

Photo from wikipedia

Abstract Literature is rich in methodologies for “aggregated” load forecasting which has helped electricity network operators and retailers in optimal planning and scheduling. The recent increase in the uptake of… Click to show full abstract

Abstract Literature is rich in methodologies for “aggregated” load forecasting which has helped electricity network operators and retailers in optimal planning and scheduling. The recent increase in the uptake of distributed generation and storage systems has generated new demand for “disaggregated” load forecasting for a single-customer or even down at an appliance level. Access to high resolution data from smart meters has enabled the research community to assess conventional load forecasting techniques and develop new forecasting strategies suitable for demand-side disaggregated loads. This paper studies how calendar effects, forecasting granularity and the length of the training set affect the accuracy of a day-ahead load forecast for residential customers. Root mean square error (RMSE) and normalized RMSE were used as forecast error metrics. Regression trees, neural networks, and support vector regression yielded similar average RMSE results, but statistical analysis showed that regression trees technique is significantly better. The use of historical load profiles with daily and weekly seasonality, combined with weather data, leaves the explicit calendar effects a very low predictive power. In the setting studied here, it was shown that forecast errors can be reduced by using a coarser forecast granularity. It was also found that one year of historical data is sufficient to develop a load forecast model for residential customers as a further increase in training dataset has a marginal benefit.

Keywords: calendar effects; load; load forecasting; forecast granularity

Journal Title: Applied Energy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.