LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The role of technology diffusion in a decarbonizing world to limit global warming to well below 2 °C: An assessment with application of Global TIMES model

Photo from wikipedia

Abstract Low-carbon power generation technologies such as wind, solar and carbon capture and storage are expected to play major roles in a decarbonized world. However, currently high cost may weaken… Click to show full abstract

Abstract Low-carbon power generation technologies such as wind, solar and carbon capture and storage are expected to play major roles in a decarbonized world. However, currently high cost may weaken the competitiveness of these technologies. One important cost reduction mechanism is the “learning by doing”, through which cumulative deployment results in technology costs decline. In this paper, a 14-region global energy system model (Global TIMES model) is applied to assess the impacts of technology diffusion on power generation portfolio and CO2 emission paths out to the year 2050. This analysis introduces three different technology learning approaches, namely standard endogenous learning, multiregional learning and multi-cluster learning. Four types of low-carbon power generation technologies (wind, solar, coal-fired and gas-fired CCS) undergo endogenous technology learning. The modelling results show that: (1) technology diffusion can effectively reduce the long-term abatement costs and the welfare losses caused by carbon emission mitigation; (2) from the perspective of global optimization, developed countries should take the lead in low-carbon technologies’ deployment; and (3) the establishment of an effective mechanism for technology diffusion across boundaries can enhance the capability and willingness of developing countries to cut down their CO2 emission.

Keywords: times model; carbon; technology diffusion; global times; technology

Journal Title: Applied Energy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.