LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graphene-carbon nanotube composite aerogel with Ru@Pt nanoparticle as a porous electrode for direct methanol microfluidic fuel cell

Photo by nci from unsplash

Abstract A Ru@Pt core–shell nanoparticles decorated graphene-carbon nanotube composite was produced as a porous anode for a flow-through direct methanol microfluidic fuel cell (MFC). The composite was characterized by TEM… Click to show full abstract

Abstract A Ru@Pt core–shell nanoparticles decorated graphene-carbon nanotube composite was produced as a porous anode for a flow-through direct methanol microfluidic fuel cell (MFC). The composite was characterized by TEM and SEM, which reveals that the size of the nanoparticles is less than 5 nm and the pore size of the porous electrode is less than 10 µm. TEM image showed that the nanoparticles were evenly distributed in the carbon substrate without agglomeration. The carbon nanotubes (CNT) increased the composite conductivity by connecting the graphene oxide nanosheets together. An orthogonal flow air-breathing microfluidic fuel cell combining the advantages of co-flow and counter flow MFC was designed to compare the electrode performances and a maximum specific power of 13.1 mW/mg catalyst was achieved with 1 M methanol in 1 M KOH as supporting electrolyte, which outperformed most others’ works in the literature.

Keywords: microfluidic fuel; fuel cell; carbon; electrode

Journal Title: Applied Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.