LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios

Photo from wikipedia

Abstract Dark fermentation may be hindered by insufficient bioavailable carbon and nitrogen sources as well as recalcitrant cell wall structures of substrates. Protein-rich microalgae and carbohydrate-rich rice residue with various… Click to show full abstract

Abstract Dark fermentation may be hindered by insufficient bioavailable carbon and nitrogen sources as well as recalcitrant cell wall structures of substrates. Protein-rich microalgae and carbohydrate-rich rice residue with various mix ratios can optimise biohydrogen and volatile fatty acids production. Optimal pretreatment of the microalgae with 1% H2SO4 and the rice residue with 0.5% H2SO4 under hydrothermal heating (140 °C, 10 min) achieved reducing sugar yields of 187.3 mg/g volatile solids (VS) (hydrolysis efficiency: 54%) and 924.9 mg/g VS (hydrolysis efficiency: 100%), respectively. Multiscale physiochemical characterisations of solid hydrolytic residues confirmed considerable damage to both substrates. Co-fermentation of pretreated rice residue and microalgae at a mix ratio of 5:1 exhibited the maximum hydrogen yield of 201.8 mL/g VS, a 10.7-fold increase compared to mono-fermentation of pretreated microalgae. The mix ratio of 25:1 resulted in the highest carbon to volatile fatty acids conversion (96.8%), corresponding to a maximum energy conversion efficiency of 90.8%.

Keywords: microalgae; mix ratios; fatty acids; volatile fatty; rice residue

Journal Title: Applied Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.