LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modelling transport modal shift in TIMES models through elasticities of substitution

Photo from wikipedia

Several efforts have been directed lately towards the endogenisation of transport modes competition in Energy/Economy/Environment/Engineering (E4) models. TIMES-DKEMS is a novel methodology paving the way for applying elasticities of substitution… Click to show full abstract

Several efforts have been directed lately towards the endogenisation of transport modes competition in Energy/Economy/Environment/Engineering (E4) models. TIMES-DKEMS is a novel methodology paving the way for applying elasticities of substitution to incorporate transport modal shift into TIMES (The Integrated MARKAL-EFOM System) models. Substitution elasticities are defined for four transport demand aggregates, each corresponding to a different distance range class. Within an aggregate, modal demands can adjust their levels according to the defined substitution elasticity and in response to changes of their shadow prices relative to a reference case. The total volume of the transport demand over the aggregate is conserved and modal shift potentials are implemented to guarantee realistic dynamics. The behavior of TIMES-DKEMS is tested under an arbitrary environmental policy, an increasingly stringent bound on CO2 emissions. Modal shares are compared with the standard version of TIMES-DK. Results show that in 2050, 11% of car mobility demand is substituted by more efficient and less costly modes such as train and coach. A sensitivity analysis on the values of substitution elasticities indicates that higher absolute values correspond to larger modal shift. Finally, other model constraints, such as mode-specific travel patterns, interact with the substitution mechanism resulting in a modal shift containment.

Keywords: elasticities substitution; transport modal; transport; modal shift

Journal Title: Applied Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.