LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of window-to-wall ratio with sunshades in China low latitude region considering daylighting and energy saving requirements

Photo by umbriferous from unsplash

Abstract Daylight is a valuable resource with characters of both photometry and radiometry, and window-to-wall ratio (WWR) is a crucial building envelope element that decides the indoor luminous and thermal… Click to show full abstract

Abstract Daylight is a valuable resource with characters of both photometry and radiometry, and window-to-wall ratio (WWR) is a crucial building envelope element that decides the indoor luminous and thermal environments. Due to the traditional utilize of external shadings and lack of appropriate design standard for buildings in China low latitude region, this study proposes a workflow for optimizing WWR with sunshades by considering both daylighting performance and energy consumption. The reference WWR is firstly decided based on the requirements of daylighting standards by using Radiance for standard room without external shading, and the reference annual cooling load of the whole building is then calculated by EnergyPlus. A large number of cases with different WWRs and external shadings are calculated and energy-saving and daylighting performances are finally verified with reference case. The optimal WWR value range with different sunshades configurations in different orientations is that meets daylighting requirement while below reference annual cooling load. The results indicate that comprehensive sunshades have the best energy performance with the benefits of both horizontal and vertical ones. With a 1.8 m comprehensive sunshade, the lower threshold of WWR raises to 0.40 for meeting daylighting requirement, and the accepted upper threshold of WWR range for west, north, east and south-facing units could reach to 0.56, 0.6, 0.6 and 0.78 respectively. For designing a building with facade the same in all orientations, the largest WWR could be set as 0.7 for west-east buildings and 0.55 for south-north buildings with 1.8 m comprehensive sunshades. The scenario has been verified and this WWR optimization process could be applied to different buildings in other climate regions.

Keywords: china low; wwr; window wall; energy; wall ratio; low latitude

Journal Title: Applied Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.