LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potential impact of shifting coal to gas and electricity for building sectors in 28 major northern cities of China

Photo from wikipedia

Abstract Building sector accounts for about 30% of total primary energy consumption in Chinese cities, in which the untreated scattered coal is one of the most important sources for local… Click to show full abstract

Abstract Building sector accounts for about 30% of total primary energy consumption in Chinese cities, in which the untreated scattered coal is one of the most important sources for local air pollutants such as SO2, NOx, PM2.5 and carbon emissions, posing serious threats on air quality, public health and climate change. This work aims to evaluate the impacts of the coal substitution policy (“coal-to-gas” and “coal-to-electricity”) on building energy demand and emissions for Beijing, Tianjin, and other twenty-six cities along the “air pollution transmission channel”, which has not been fully studied before and could assist city policy makers in coping with this drastic energy transformation by weighing potential social costs and benefits. To this end, a systematic method to downscale building energy consumption from provincial/regional level to grid level (0.1° × 0.1°) is developed using openly available data and information to establish high resolution emission projections of CO2 and major air pollutants (SO2, NOx and PM2.5) for these cities. This framework provides a convenient way to simulate the spatiotemporal dynamics of future emissions by sector for multiple cities. Combined with three coal substitution scenarios designed in this study, some policy suggestions on alternative energy and social welfare improvement were made by investigating city scale effects on energy accessibility, affordability, as well as health and environmental benefits.

Keywords: electricity building; coal; energy; coal gas

Journal Title: Applied Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.