LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A generally applicable, simple and adaptive forecasting method for the short-term heat load of consumers

Photo from wikipedia

Abstract Energy management systems aiming for an efficient operation of hybrid energy systems with a high share of different renewable energy sources strongly benefit from short-term forecasts for the heat-load.… Click to show full abstract

Abstract Energy management systems aiming for an efficient operation of hybrid energy systems with a high share of different renewable energy sources strongly benefit from short-term forecasts for the heat-load. The forecasting methods available in literature are typically tailor-made, complex and non-adaptive. This work condenses these methods to a generally applicable, simple and adaptive forecasting method for the short-term heat load. From a comprehensive literature review as well as the analysis of measurement data from seven different consumers, varying in size and type, the ambient temperature, the time of the day and the day of the week are deduced to be the most dominating factors influencing the heat load. According to these findings, the forecasting method bases on a linear regression model correlating the heat load with the ambient temperature for each hour of the day, additionally differentiating between working days and weekend days. These models are used to predict the future heat load by using forecasts for the ambient temperature from weather service providers. The model parameters are continuously updated by using historical data for the ambient temperature and the heat load, i.e. the forecasting method is adaptive. Additionally, the current prediction error is used to correct the prediction for the near future. Due to their simplicity, all necessary steps of the forecasting method, the update of the model parameters, the prediction based on linear regression models and the correction, can be implemented and computed with little effort. The final evaluation with measurement data from all seven consumers investigated leads to a Mean Absolute Range Normalized Error (MARNE) of 2.9% on average, and proves the general applicability of the forecasting method. In summary, the forecasting method developed is generally applicable, simple and adaptive, making it suitable for the use in energy management systems aiming for an efficient operation of hybrid energy systems.

Keywords: energy; forecasting method; heat load

Journal Title: Applied Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.