LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combined decentralized and local voltage control strategy of soft open points in active distribution networks

Photo from wikipedia

Abstract With the integration of high shares of distributed generators (DGs), it is increasingly difficult to cope with the voltage violations and puts forward a higher requirement for the operational… Click to show full abstract

Abstract With the integration of high shares of distributed generators (DGs), it is increasingly difficult to cope with the voltage violations and puts forward a higher requirement for the operational flexibility in active distribution networks (ADNs). Soft open point (SOP) can realize accurate power flow control and continuous voltage regulation, which is usually operated by the centralized control strategy. However, the heavy burden of communication and complex global optimization process hinder its application on fast voltage control. This paper proposes a combined decentralized and local voltage control strategy of SOPs to rapidly cope with the frequent voltage fluctuations. Based on the dynamic network partition results, the decentralized optimization is applied to regulate active power transmission of SOPs among the connected areas. The Q - V control curve is optimally tuned to locally regulate the reactive power outputs of SOPs by using the intra-area information. Compared to the widely-used centralized strategy, the proposed combined control strategy of SOPs can effectively reduce the communication and computational burden with acceptable voltage control performance. Finally, the effectiveness of the proposed control strategy of SOPs is validated on the modified PG&E 69-node distribution system and modified IEEE 123-node distribution system.

Keywords: control; voltage; voltage control; distribution; control strategy

Journal Title: Applied Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.