LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of low-carbon utility systems: Exploiting time-dependent grid emissions for climate-friendly demand-side management

Photo from wikipedia

Abstract Efficient energy supply is key to reduce industrial greenhouse gas emissions. In the industry, energy is often supplied by on-site utility systems with electricity grid connection. Usually, electricity from… Click to show full abstract

Abstract Efficient energy supply is key to reduce industrial greenhouse gas emissions. In the industry, energy is often supplied by on-site utility systems with electricity grid connection. Usually, electricity from the grid is assumed to have annually averaged emission factors when greenhouse gas emissions are calculated. However, emissions from electricity production are in fact time-dependent to match continuously varying demand and supply. These time dependent emissions offer the potential to reduce emissions by temporal shifting of electricity demand in demand-side management. Here, we investigate the impact of time-dependent grid mix emissions for low-carbon utility systems. For this purpose, we present a detailed mixed-integer linear programming model for a low-carbon utility system. Subsequently, we compute time-dependent grid emission factors based on the current mix and based on the marginal technologies. These grid emission factors serve as input to determine and economic and environmental trade-off curves. We show that emissions can be reduced by up to 6% at the same costs by considering time-dependent grid mix emissions, instead of annual average grid emissions. Marginal time-dependent emission factors even allow to reduce emissions by up to 60%. Our work shows that time-dependent grid emissions factors could enable climate-friendly demand-side management leading to significant emission reductions.

Keywords: dependent grid; time; time dependent; demand; utility systems

Journal Title: Applied Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.