LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reactivity of novel high-performance fuels on commercial three-way catalysts for control of emissions from spark-ignition engines

Photo from wikipedia

Abstract The Department of Energy “Co-Optimization of Fuels and Engines” initiative aims to simultaneously develop novel high-performance fuels with advanced engine designs to reduce petroleum consumption. To achieve commercialization, advanced… Click to show full abstract

Abstract The Department of Energy “Co-Optimization of Fuels and Engines” initiative aims to simultaneously develop novel high-performance fuels with advanced engine designs to reduce petroleum consumption. To achieve commercialization, advanced engines running on alternative fuels still must meet emissions regulations. Warm three-way catalysts (TWC) are very effective at meeting the stringent emissions regulations on pollutants such as nitrogen oxides (NOx), non-methane organic gases (NMOG) and carbon monoxide (CO) from gasoline-fueled spark-ignition (SI) engines operating under stoichiometric conditions; thus, most SI engine emissions occur during cold-start, when the TWC has not yet achieved light-off. In the current study, the light-off behavior of novel high-performance fuel candidates has been investigated on a hydrothermally-aged commercial TWC using a synthetic engine-exhaust flow reactor system according to industry guidelines. Over 30 potential fuel components were examined in this study, including alkanes, alkenes, alcohols, ketones, esters, aromatic ethers, and non-oxygenated aromatic hydrocarbons. Short-chain acyclic oxygenates, including alcohols, ketones, and esters, tended to light off at relatively low temperatures, while alkenes, aromatics, and cyclic oxygenates tended to light off at relatively high temperatures. The light-off behavior of alkanes and alkenes depended strongly on their size and structure. In terms of the influence on CO light-off on the TWC, the fuels fell into two distinct categories: (i) non-inhibiting species including C2-C3 alcohols, alkanes, acyclic ketones, and esters; and (ii) inhibiting species including alkenes, aromatic hydrocarbons, cyclic oxygenates, and C4 alcohols.

Keywords: way catalysts; performance fuels; novel high; three way; high performance

Journal Title: Applied Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.