LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Figure of merit and improved performance of a hybrid thermomagnetic oscillator

Photo by igorkon from unsplash

Abstract The figure of merit for energy harvesting of a thermomagnetic oscillator has been analyzed. For the first time, a figure of merit for a thermomagnetic device combining the material… Click to show full abstract

Abstract The figure of merit for energy harvesting of a thermomagnetic oscillator has been analyzed. For the first time, a figure of merit for a thermomagnetic device combining the material properties and device parameters has been established. Our analysis indicates that alloys with a sharp magnetic transition with respect to temperature and lower hysteresis exhibit higher figure of merit for a given set of heat load and heat sink temperatures. The material with the highest figure of merit, (MnNiSi)0.68(Fe2Ge)0.32, was employed to construct a thermomagnetic oscillator. A thermomagnetic alloy was coupled to a permanent magnet by a flexible spacer, one end of the flexible spacer was attached to the thermomagnetic alloy and the other to the permanent magnet. Use of a flexible spacer increases the oscillation frequency by 32% compared to a rigid spacer. The permanent magnet also exhibited damped oscillations, resulting in an increase voltage/cycle by 18% compared to the rigid spacer case. Thus, figure of merit is a suitable guideline for tuning the material properties and optimizing the device parameters for maximizing the performance of the thermomagnetic oscillator.

Keywords: figure; figure merit; spacer; thermomagnetic oscillator

Journal Title: Applied Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.