Abstract A hollow fiber membrane-based semi-direct evaporative cooler (MSDEC) is proposed in this study to conduct a parametrical evaluation. The proposed direct evaporative cooling module is potentially considered as an… Click to show full abstract
Abstract A hollow fiber membrane-based semi-direct evaporative cooler (MSDEC) is proposed in this study to conduct a parametrical evaluation. The proposed direct evaporative cooling module is potentially considered as an effective strategy to eliminate the water droplet carryover issue without deteriorating the indoor air quality. A numerical model has been developed to obtain an in-depth understanding of the air treatment process. The model was compared with the experimental data to demonstrate its accuracy for predicting the air conditions in the membrane-based module. The heat and mass transfer performance of the module has been studied by employing the validated model. Simulation results indicated the capability of the proposed membrane-based module to cool and humidify the air. The performance of the membrane-based module has been studied by considering the impact of several key parameters including the inlet air velocity, the inlet air dry-bulb temperature, the inlet air relative humidity, the feed water velocity and the geometric dimensions. The wet-bulb effectiveness of the membrane-based module can be improved to 0.73 for an inlet air velocity of 0.5 m/s. The results were able to provide theoretical suggestions for the further optimized design and application of the hollow fiber membrane-based evaporative cooling module.
               
Click one of the above tabs to view related content.