Abstract Coupling single-carrier networks into multi-carrier energy systems (MESs) has recently become more important. Conventional load flow models for the separate single-carrier networks are not able to capture the full… Click to show full abstract
Abstract Coupling single-carrier networks into multi-carrier energy systems (MESs) has recently become more important. Conventional load flow models for the separate single-carrier networks are not able to capture the full extend of the coupling. Recently, different models for multi-carrier energy networks have been proposed, either using the energy hub (EH) concept, or using a case specific approach. Although the EH concept can be applied to a general MES, it is unclear how the EH should be represented in the graph of the MES. On the other hand, the case specific approaches are not easily applicable to general MESs. This paper presents a graph-based framework for steady-state load flow analysis of general MESs. Furthermore, the effect of coupling on the resulting integrated system of equations is investigated. The proposed framework is validated using a small MES. This example shows that our framework is applicable to a general MES, and that it generalizes both the EH concept and the case specific approach.
               
Click one of the above tabs to view related content.