LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Designing sustainable bioenergy from residual biomass: Site allocation criteria and energy/exergy performance indicators

Photo from wikipedia

Abstract This work aims at developing a comprehensive methodology defining the influence of the proper feedstock management, number and location of gasification-power plants, and process configuration based on the thermodynamic… Click to show full abstract

Abstract This work aims at developing a comprehensive methodology defining the influence of the proper feedstock management, number and location of gasification-power plants, and process configuration based on the thermodynamic performances of the proposed system under different scenarios. The feedstock was citrus peel from local citrus processing factories. A three-step model was adopted: best site criteria decision tool, location-allocation analysis by minimising energetic transport costs, energy/exergy and emissions analysis. This model was applied to three process scenarios. In the first, we considered a wet biomass (65% water content) dried at a local plant using cogenerated heat; in the second, the biomass dried prior to transportation (15% water content) used to power the combined heat and power plant. The cogenerated heat fed an Organic Rankine Cycle (ORC) unit. In the third, the cogenerated heat is used for district heating. The scenario analysis showed that the regional potential for producing renewable electricity from citrus peel gasification is 66.7–74.6 GWh. Results showed that the Energy Return on Investment (EROI) is

Keywords: energy; biomass; energy exergy; site; allocation; cogenerated heat

Journal Title: Applied Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.