LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multidisciplinary design optimization of distributed energy generation systems: The trade-offs between life cycle environmental and economic impacts

Photo by appolinary_kalashnikova from unsplash

Abstract Distributed energy systems (DES) are the focus of increasing attention because they have the potential to enhance the sustainability performance of energy generation. Previous DES researches evaluated various distributed… Click to show full abstract

Abstract Distributed energy systems (DES) are the focus of increasing attention because they have the potential to enhance the sustainability performance of energy generation. Previous DES researches evaluated various distributed energy technologies and systems from different aspects. However, there is still a research gap to evaluate and compare the multiple technology combinations and sizes for finding optimal energy solutions under various scenarios. This study aims to determine the best combination of technologies and their corresponding sizes for DES for various building types and climate zones in terms of life cycle environmental and economic impact. We developed parametric models (which considers dynamic hour by hour energy demand) for six commercially available distributed energy technologies and simulated the performance of them under various conditions. Then, we used a novel approach – multidisciplinary design optimization (MDO) to examine the billions of options (e.g., technologies, sizes, climate zone, Etc.) and identified the Pareto front with the optimal environmental and economic impact. According to MDO simulations, the microturbine-solar PVs-lithium ion battery and solid oxide fuel cells-solar PVs-lithium ion battery are two optimal combinations of technologies for three commercial building types for five climate zones. The DES can primarily reduce the environmental impact compared to conventional centralized energy production (CCEP) by 16–61% in all scenarios. However, the life cycle cost of DES is higher than CCEP, especially for SOFC-based DES. The microturbine-based DES is more cost-competitive and economical (about 65%, 32%, and 64% lower than SOFC-based DES for the small, medium, and large office, respectively).

Keywords: life cycle; environmental economic; distributed energy; energy

Journal Title: Applied Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.