LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental validation of a multiphase flow model of a lab-scale fluidized-bed gasification unit

Photo from wikipedia

Abstract This paper presents the results of a combined experimental and computational characterization of a biomass gasification process as a carbon neutral technology for power generation and/or green hydrogen production.… Click to show full abstract

Abstract This paper presents the results of a combined experimental and computational characterization of a biomass gasification process as a carbon neutral technology for power generation and/or green hydrogen production. With the aim to set and validate a computational fluid dynamic (CFD) multiphase flow simulation model based on the MFiX suite – as a support for the design and optimization of advanced reactors for energy purposes – a wide experimental campaign has been carried out with cypress (Cupressus sempervirens) wood chips in a lab-scale bubbling fluidized-bed gasification unit in different operation modes: pyrolysis, air-blown gasification as well as steam gasification of char. In addition, pyrolysis kinetics have been experimentally assessed by thermogravimetric analysis (TGA). This study shows that biomass pyrolysis is characterized by a syngas yield of 0.65–0.66, whereas its gasification allows the production of a syngas (1.73–1.77 Nm3 per kilogram of fuel) characterized by a lower heating value of about 5 MJ/Nm3, with a hydrogen concentration between 11.4 and 14.3% by volume (depending on the equivalence ratio). In addition, model used is a good predictive tool that can successfully simulate the process and predict syngas composition with good accuracy, in particular for CO, H2 and CH4.

Keywords: multiphase flow; lab scale; fluidized bed; model; bed gasification; gasification

Journal Title: Applied Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.