LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiscale operando X-ray investigations provide insights into electro-chemo-mechanical behavior of lithium intercalation cathodes

Photo by neom from unsplash

Abstract The electrochemical performance and cycle life of lithium-ion batteries (LIBs) depend on the electrochemical, chemical, and mechanical behavior of electrodes and electrolytes. Despite extensive studies conducted previously, challenges exist… Click to show full abstract

Abstract The electrochemical performance and cycle life of lithium-ion batteries (LIBs) depend on the electrochemical, chemical, and mechanical behavior of electrodes and electrolytes. Despite extensive studies conducted previously, challenges exist to decouple these behaviors, capture the evolution of electro-chemo-mechanical behavior in realistic conditions, and correlate atomic-scale stress evolution to micro-scale bulk mechanical degradation. Here, we report multiscale operando techniques to investigate polydisperse battery electrodes by integrating volume-averaged quantitative synchrotron X-ray scattering with high-resolution transmission X-ray microscopy (TXM). The former provides us information spanning a wide spatial range, from Angstrom-level atomic structures to micrometer-level particle scales, while the latter provides time-resolved 2D images of the particles during cycling. The complementarity of the two operando techniques is demonstrated by an over-lithiation test of LiCoO2 electrodes, where particles crack and eventually pulverize. Additionally, the techniques are applied to study LiCoO2 cycling stability from 3.0 V to 4.5 V. Operando X-ray scattering result shows nanometer-scale features keep forming in LiCoO2 electrodes during cycling, resulting in an increased projected area observed by the TXM experiment. The formation of such features is inhibited by a polymer coating on the electrode, leading to vastly improved cycling stability. The polymer coating alleviates LiCoO2 surface deterioration, reduces side product generation, and inhibits LiCoO2 particles volume expansion during the cycling test. These operando multimodal X-ray techniques presented herein thus offer a novel, multiscale diagnostic modality for studying existing and emerging battery materials, aiding the development of next-generation LIBs.

Keywords: chemo mechanical; mechanical behavior; ray; multiscale operando; electro chemo

Journal Title: Applied Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.